Stratocumulus to Cumulus transition CPT

Goal: Improve the representation of the cloudy boundary layer in NCEP GFS and NCAR CAM5 with a focus on the subtropical stratocumulus to cumulus (Sc-Cu) transition

Low-level clouds (%), ISCCP, ANN

Hypothesis: Sc-to-Cu transition plays key role in cloud-climate feedbacks (e.g. Teixeira et al, 2011)

NCEP H. Pan (PI), J. Han, R. Sun

NCAR S. Park (PI), C. Hannay

JPL J. Teixeira (CPT lead PI), M. Witek

U. Washington C. Bretherton (PI), J. Fletcher, P. Blossey

UCLA R. Mechoso (PI), H. Xiao

LLNL S. Klein (PI), P. Caldwell

NOAA funded Aug. 2010 - 2013 (additional internal JPL and DOE funds)

Strategy for climate model physics development

High-resolution model data:

Large Eddy Simulation (LES) models
Cloud Resolving Models (CRMs)

Testing in Single Column Models:

Versions of Climate Models

3D Climate/Weather Models:

Evaluation and Diagnostics with satellite observations

LES/CRM models provide unique information on small-scale statistics

Sc-to-Cu composite transition case with NCEP SCM

NCAR and NCEP SCM results will be submitted soon JPL LES results will be submitted soon

NCEP Model Diagnostics

- NCAR CESM 1.0 (coupled version of CAM 5.0, 200-year run)
- NCEP CFS (coupled version of operational GFS, 20-year)
- Modified NCAR AMWG diagnostic package to add NCEP GFS output
- NCEP has TOA energy imbalance
- Both models reproduce global circulation patterns
- Both models have cloud biases

Xiao et al, UCLA

NCEP/NCAR diagnostics of cloud transition

NCAR and NCEP results are significantly different

Eddy-Diffusivity/Mass-Flux (EDMF)

Dividing a grid square in two regions (updraft and environment) and using Reynolds decomposition and averaging leads to

$$\overline{w'\varphi'} = a_u \overline{w'\varphi'}_u + (1 - a_u) \overline{w'\varphi'}_e + a_u (1 - a_u) (w_u - w_e) (\varphi_u - \varphi_e)$$

where a_u is the updraft area. Assuming $a_u << 1$ and $w_e \sim 0$ leads to

$$\overline{w'\varphi'} = \overline{w'\varphi'}_e + a_u w_u (\varphi_u - \overline{\varphi})$$

ED closure: assuming ED for 1st term and neglecting 2nd term

MF closure: neglecting 1st term and assuming $M=a_uw_u$

EDMF:
$$\overline{w'\varphi'} = -k \frac{\partial \overline{\varphi}}{\partial z} + M(\varphi_u - \overline{\varphi})$$

Siebesma & Teixeira, 2000

EDMF may be able to reproduce the mixing for the entire Sc-Cu transition

Implementation of EDMF in GFS SCM Dry convective boundary layer

EDMF improves dry convective boundary layer in GFS

Sc-to-Cu Transition CPT - Summary

- ☐ GCSS Sc-Cu cases with NCAR and NCEP SCMs, and LES performed and submitted (UW, NCAR, NCEP, JPL)
- Detailed coupled diagnostics with NCEP and NCAR global models performed (NCEP, NCAR, UCLA)
- □ PDF cloud parameterization implemented and tested in NCAR global model (LLNL, NCAR)
- □ EDMF parameterization implemented and tested in SCM mode in NCEP GFS (JPL, NCEP, NCAR, UW)